Salto entre redes con RSLinx (USB-Ethernet)

logo2dominios

 

 


Tras varias semanas sin realizar ninguna entrada y en aras de romper esta etapa poco productiva en el blog, vamos a ver un tema que llevaba tiempo deseando publicar y compartir con los lectores del blog: el salto entre redes en RSLinx.

En esta entrada vamos a configurar RSLinx, para poder tener acceso a través de un puerto serie (USB) a una red Ethernet, estos saltos se han realizado desde hace mucho tiempo de forma casi transparente en DeviceNet y ControlNet, con estas funcionalidades tenemos acceso a los equipos que estaban por debajo de las tarjetas escáner, todo esto es posible gracias al protocolo CIP. Esta funcionalidad, es muy interesante, ya que nos ofrece muchas funcionalidades que en un principio no reparas en usarlas, pero una vez que la descubras, le sacarás mucho partido, como son entre otras:

  • Conectarnos a redes de las que no dispongamos de una interface específica.
  • Tener acceso a una subred determinada, estando con nuestro PC en otra subred diferente.
  • Tener visión y conectividad con todas las redes de nuestra arquitectura, sin tener que estar desconectando y conectando.

En este ejemplo vamos a realizar un salto desde USB hasta una red Ethernet, no obstante aplicando la misma filosofía podremos realizarlo entre subredes ethernet diferentes, entre ethernet y DeviceNet o ControlNet, etc.

Comenzamos conectando el PAC, en nuestro caso es un ControlLogix, a través del puerto USB con nuestro PC, este tema lo hemos visto con más detalle en una entrada anterior, que podéis repasar si fuera necesario.

  • Debe aparecer el Driver USB en RSLinx automáticamente:

aparece_usb

  • Si estamos trabajando con una MV (Máquina Virtual) y no apareciera el controlador, nos aseguramos que está conectado en “Removable Devices”, en nuestro caso es un 1756-L71.

conectar_usbMV1

  • Si desplegamos el Driver, podemos observar las tarjetas en el backplane.

rslinx_red_usb

En nuestro ejemplo, disponemos de dos tarjetas Ethernet en dos subredes diferentes, la tarjeta 1756-ENBT, que tiene la IP 172.16.0.2 y la 1756-EN2T con la IP 192.168.1.204, nosotros vamos acceder a ésta última que está conectada a una red DLR.

rslinx_red_usb_desplegada

  • En nuestro ejemplo, vamos a conectarnos a varias periferias E/S (POINT I/O) y un PAC Compact Logix que están en una red DLR y para ello vamos a saltar desde el controlador y su puerto USB hasta la tarjeta 1756-EN2T.

salto_usb_1

  • Sobre la red Ethernet de la tarjeta del slot número 6 (1756-EN2T), pulsamos sobre botón derecho y seleccionamos “properties…”.

salto_usb_2

  • Nos aparece la siguiente ventana emergente.

salto_usb_3

  • En este diálogo, debemos añadir las IP´s a las que necesitemos tener acceso.

salto_usb_4

  • La IP del Compact Logix es la 192.168.1.199 y la de las periferia E/S desde la IP 192.168.1.200 hasta la 192.168.1.203, podemos seleccionarlas de una en una.

salto_usb_5

salto_usb_6

O podemos seleccionarlas todas y después añadirlas en bloque.

salto_usb_7

salto_usb_8

salto_usb_9

  • Para probar la conectividad y el salto entre redes, realizamos un “Data Monitor” al Compact Logix.

salto_usb_10

salto_usb_11

salto_usb_12

salto_usb_13

De igual manera, podemos realizar un salto entre las tarjetas 1756-ENBT y la 1756-EN2T, para ello deberíamos conectarnos al PAC a través del Driver Ethernet Devices, como podéis ver las posibilidades que nos dan el salto entre redes son muchas y en entradas futuras iremos viendo.

Saludos!!!

faviconLazo de Control

DeviceLogix Cap. 6 POINT I/O Módulos 1734-8CFG y 1734-8CFGDLX

logo2dominios


Tras ver el modelo productor/consumidor, seguimos con los módulo de E/S digitales 1734-8CFG y 1734-8CFGDLX, con estos dos módulos vamos a trabajar mucho, ya veréis la importancia de ellos en periferias con lógica distribuida.

Estos módulo puede trabajar tanto de entradas como salidas digitales, son autoconfigurables, ya que en función de la conexión y la programación que hagamos del punto, éste se comportará como entrada o salida digital. Esta configuración es posible por cada punto, es decir podemos usar cada punto de manera independiente como entrada o salida, por ejemplo podemos tener seis (6) entradas y dos (2) salidas digitales, o siete (7) entradas y una(1) salida. La diferencia entre las dos referencias, es que la 1734-8CFGDLX respecto a la 1734-8CFG, soporta DeviceLogix, es decir, la programación se aloja en este módulo.

1734-8CFG_300x300Módulo 1734-8CFG

Estos módulo soportan: la tecnología RIUP, el autodireccionamiento y autoajuste de velocidad, esto último de acuerdo con el backplane de la cabecera POINT I/O.

1734-8CFGDLX_300x300_ZMMódulo 1734-8CFGDLX

Para trabajar con estos módulos, lo primero que vamos a hacer es montar y configurar una demo con el siguiente material:

  • Cabecera DLR Ethernet 1734-AENTR.
  • Módulo 1734-8CFG con base 1734-TBS.
  • Módulo 1734-8CFGDLX con base 1734-TBS.

La documentación de Rockwell, que usaremos es la siguiente:

  • POINT I/O Digital and Analog Modules and POINTBlock I/O Modules.

http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1734-um001_-en-p.pd

  • POINT I/O and ArmorPOINT I/O DeviceLogix Modules.

http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1734-um015_-en-e.pdf

Comenzamos configurando el chasis en la cabecera, esto es el número de módulos que vamos a implementar, reservando el slot 0 para ésta, es decir, si vamos a implementar dos módulos de E/S, debemos configurar una dimensión de chasis de tres (3). Para ello ponemos en el navegador la dirección IP de la cabecera, en nuestro caso es la 192.168.1.50 (selector de décadas con valor “050”), accediendo al servidor web del equipo.cap6_0

Para acceder a la configuración del chasis, desplegamos el menú “configuration” y pulsamos sobre “identity”, introducimos el usuario “admin” y la contraseña “password” e introducimos en el campo “Chassis size” el valor tres (3).cap6_1 cap6_2

Una vez que introducimos el valor deseado, debemos aplicar los cambios en “Apply Changes”, apareciendo un mensaje emergente “Chassis Size Saved”, y para que se hagan efectivos, debemos quitar alimentación a la cabecera.

cap6_3

Si está todo bien configurado, y tenemos link en la cabecera, debemos tener todos los led´s en colo verde.

IMG_2813_1

Una vez esté configurado el tamaño del chasis, introducimos los módulos de E/S y realizamos un “Browse Chasis”, observando que las tarjetas tienen los números de slot correctos. En nuestro ejemplo:

  • Slot 1. 1734-8CFG
  • Slot 2. 1734-8CFGDLX

cap6_4

Quedando la demo, montada y configurada:

IMG_2808Demo POINT I/O

IMG_2811_2Detalle POINT I/O

En próximas entradas, seguiremos viendo estos módulos en más profundidad.

Siguiente entrada de la serie:

https://www.noeju.com/devicelogix-cap-7-point-io-programacion-modulo-1734-8cfgdlx-parte-1/

Saludos.

favicon

 

DeviceLogix Cap. 5 POINT I/O Modelo Productor/Consumidor

logo2dominios


Tenemos que hacer una parada, para repasar un concepto que es la base del modelo de muchos equipos del fabricante Allen Bradley y básico para poder continuar con DeviceLogix con cabeceras ethernet: El Modelo Productor/Consumidor.

Modelo Maestro/Esclavo.

En una arquitectura clásica como es el modelo Maestro/Esclavo, el controlador interroga de forma continua a los módulos que proporcionan información de entrada, realiza la imagen de proceso de entradas de forma continua.

  • Continuamente se escanean entradas, cuando en realidad ningún evento se ha producido en las mismas. Ello supone gran cantidad de tráfico por el bus o red, totalmente innecesario.
  • Supone una carga de trabajo para el procesador, que merma su capacidad de ejecución de programa.

maestroesclavoModelo Maestro/Esclavo

Modelo Productor/Consumidor.

En el modelo Productor / Consumidor, los módulos que generan información de entrada producen datos, que otros dispositivos consumen.

  • El controlador no escanea los módulos. Simplemente consumen los datos que producen los módulos de entrada.
  • Esta técnica libera de forma notable la carga del procesador.
  • Se dispone de la información en tiempo real, en el mismo instante en que se produce.

productorconsumidorModelo Productor/Consumido

El modelo Productor/Consumidor permite un control distribuido:

  • Utilizando el modelo Productor / Consumidor múltiples equipos pueden compartir datos en un sistema.
  • Los datos pueden ser productores de información de la misma forma que lo es un módulo de entradas.
  • De esta forma los datos están en el sistema (bus/red),lo que implica su ámbito global.

Como veremos en las siguientes entradas, es fundamental tener claro el modelo Productor/Consumidor para poder trabajar con DeviceLogix y cabeceras ethernet, en la siguiente entrada vamos a ver los módulos de E/S digitales 1734-8CFG y 1734-8CFGDLX.

Siguiente entrada de la serie:

https://www.noeju.com/devicelogix-cap-6-point-io-modulo-1734-8cfg-y-1734-8cfgdlx/

Saludos.

favicon

 

 

Video Introducción Autómatas Programables

logo_dominios_apaisados1


En una de las primeras entradas del blog, compartí la presentación que suelo realizar para introducir a los autómatas programables en formato PDF, ahora con esta presentación, he realizado un video con el audio de los comentarios que suelo realizar en los cursos, espero os guste:

En futuras entradas, veremos con más profundidad las diferencias entre los PLC´s y los PAC´s.

Saludos!!!.

favicon

 

DeviceLogix Cap. 4 POINT I/O 1734-AENTR Parte 2

logo2dominios


Continuando con la cabecera 1734-AENTR, vamos a proceder a su configuración, veréis que con pocos pasos y muy sencillos tendremos una cabecera configurada para su instalación o sustitución. Esta configuración, es exactamente igual para la cabecera de un sólo puerto Ethernet 1734-AENT.

IMG_2674

Para comenzar, debemos conectarnos con la cabecera y para ellos debemos asignarle una dirección IP, y lo primero que debemos conocer para ello, es el selector de décadas de tres dígitos, que podéis ver en la siguiente imagen.

IMG_2670

La cabecera viene de fábrica con el valor “999” y con el DHCP habilitado, por lo que si lo conectamos en una red con un servidor DHCP, recibirá una IP del rango de éste. También, podemos usar la utilidad BootP de Rockwell para asignarle otra dirección IP. No obstante, estas configuraciones serán temporales y debemos usarlas para realizar un primer acceso y a través del servidor web configurarla de manera definitiva.

Lo comentado anteriormente es una forma válida de realizar la primera conexión, no obstante os aconsejo que uséis otro método más intuitivo y más independiente de redes y equipos existentes, es decir, una conexión sólo entre PC y cabecera, sin interacción de otros equipos, como suelo decir “conectarte en un entorno controlado”. Para ello, debemos:

  • Seleccionar en el selector de décadas un valor, comprendido entre “001” y “254”, si se selecciona un valor en este rango, forzamos que la cabecera tenga una dirección IP 192.168.1.xxx, siendo el último octeto el valor que pongamos en el selector de décadas. En nuestro ejemplo, seleccionaremos el valor “100”. Por lo que la cabecera tendrá la siguiente configuración, IP 192.168.1.100 y Máscara de Subred 255.255.255.0

IMG_2672

  • Configurar nuestra máquina (PC) con una IP que esté en el rango y que no esté en uso, en nuestro caso, ponemos la IP 192.168.1.99 y Máscara de Subred 255.255.255.0
  • Abrimos un navegador web, aconsejo internet explorer, no obstante siempre que disponga de java, se puede utilizar cualquiera. En la barra de navegación, introducimos la dirección de la cabecera “http://192.168.1.100”, si todo va bien, debemos visualizar la ventana “home” de la cabecera. En la que podemos visualizar, la dirección IP y el modo de introducción (“from switch”), dirección MAC, número de serie, revisión de firmware….

aentr9

  • Por culpa de la configuración restrictiva de java, podríamos tener problemas a la hora de visualizar el servidor web y para solucionarlo debemos cambiar la seguridad e incluir la dirección  la lista de excepciones.

aentr2

aentr5

  • Una vez que accedemos correctamente al servidor web, debemos acceder a la ventana “configuration” y nos solicitará un usuario y password. El que trae por defecto es Usuario: “admin” y Password: “password”.

 

aentr13

  • En la carpeta “configuration”, tenemos tres pestañas: “Identity”, “Network Configuration” y “Services”. En la pestaña “Identity”, tenemos una de las configuraciones más importantes, “Chassis Sizze”, este número define la dimensión del chasis del bus “DeviceNet”, contabilizando la cabecera (nodo 0), siendo el valor 1 cuando sólo disponemos de la cabecera y 64, cuando disponemos de 63 módulos instalados. Cualquier cambio, requiere de un reinicio para que los cambios se activen.

IMG_2676

aentr15

  • En la pestaña “Network Configuration” podemos cambiar la configuración de la red y en “Services” podemos cambiar el usuario y password que trae por defecto.

aentr14

  • Para finalizar, hay una funcionalidad muy importante que es “Browse Chassis”, ya veremos más adelante que esta funcionalidad es muy útil para que se asignen los nodos de las tarjetas correctamente. Esta utilidad, escanea la red DeviceNet, identificando los módulos que se encuentran conectadas a la cabecera y el número de nodo que tienen. Para que comience a escanear, es necesario pulsar sobre “Start”.aentr17 aentr18 aentr19
  • Si todo va bien, debemos ver los módulos y si pulsamos sobre la referencia podemos visualizar el estado de las E/S.aentr20 aentr21

Siguiente entrada de la serie:

https://www.noeju.com/devicelogix-cap-5-point-io-modelo-productorconsumidor/

Saludos.

favicon

 

DeviceLogix Cap. 3 POINT I/O 1734-AENTR Parte 1

logo2dominios


En esta entrada, vamos a comenzar con unos de los adaptadores de comunicación, más concretamente con el 1734-AENTR, esta cabecera dispone de doble puerto Ethernet, y se suele usar en topologías de tipo anillo, gracias a la tecnología de switch incorporada y la tecnología DLR (Device Level Ring).

IMG_2642Foto embalaje 1734-AENTR

IMG_26441734-AENTR

En el lateral del equipo, podemos ver la información de la cabecera, siendo la más relevante (foto de ejemplo):

  • Referencia 1734-AENTR
  • Revisión de Firmware V3.006
  • Serie A

IMG_2648Detalle de equipo en referencia lateral.

Los dos documentos básicos para comenzar a trabajar con este equipo, son los siguientes:

El embalaje contiene los siguientes elementos:

  • Instrucciones de instalación.
  • Cabecera.
  • Conector de alimentación.
  • Tapa final de bus.

IMG_2646

 

Lo primero que debemos realizar, es la fijación de la cabecera al carril DIN, para ello debemos poner en posición vertical el tornillo de fijación y para fijarla dejarlo en posición horizontal.

IMG_2667Detalle de tornillo de fijación al carril.

La cabecera, dispone de un conector rápido:

IMG_2662Detalle de conector rápido.

A continuación, procederemos a la conexión eléctrica del equipo, para ello utilizaremos el esquema que se recoge en las instrucciones de instalación, o en su defecto podemos verlas en el lateral del equipo.

aentr22

En nuestro caso, la conectamos a una fuente de alimentación de 24VDC:

IMG_2658

En la siguiente entrada realizaremos la configuración de esta cabecera.

Siguiente entrada de la serie:

Saludos.

favicon

Topologías de Redes Ethernet (Santiago Cortés)

logo_dominios_apaisados1


En esta entrada Santiago Cortés Ocaña, nos va a presentar las topologías de Red Ethernet más usadas en Instalaciones de Control con Periferia de E/S descentralizadas.

En reuniones de año nuevo (noche vieja), los principales participantes en la cena serán nuestros familiares, que posiblemente vendrán desde lugares lejanos a reunirse, conformando desde nuestros abuelos, tíos, primos e invitados, incluso algún cuñado “listorillo”. Con todos los participantes unidos en esa noche, se puede realizar la siguiente analogía.

Una red física en el mundo industrial es como un “árbol genealógico”, en donde los invitados a la cena, es decir tus familiares, son los encargados de componer las características del árbol al cual perteneces. Siendo los nodos, cada uno de los integrantes de tu familia, y las ramas, las conexiones físicas que existen de un punto inicial a un punto final.

arbol

Los diferentes componentes que hacen parte de una red, se llamará topología de red. Entre los más utilizados en la Industria, se encuentran los tipo estrella o árbol, bus o lineal y anillo. Además de éstos, existen muchos más, los cuales son derivaciones o adiciones a los anteriormente nombrados, en donde elegir entre una y otra de estas topologías, dependerá de muchos factores como el número de elementos a conectar, condiciones físicas, tipo de acceso que permitan los dispositivos, seguridad, etc.

CapturaTopoCon el objetivo de presentar tres topologías a nivel práctico, hemos decidido analizar las de tipo lineal, estrella y anillo, presentando algunas transparencias que podrán ayudar al entendimiento, de las ventajas y desventajas que cada una de estas topologías presenta. Además, para el tipo anillo se usó la tecnología DLR sobre dispositivo, la cual tiene muchas ventajas, presentadas con más detalle:

https://www.noeju.com/dlr-device-level-ring/

Los equipos utilizados para esta práctica fueron:

Cantidad Nombre IP
1 ud. FL Switch 7008-EIP de Phoenix Contact 192.168.1.199
1 ud. Compact Logix 1769-L24ER-QB1B de Allen Bradley 192.168.1.200
3 uds. Point I/O de Allen Bradley 192.168.1.201
192.168.1.202
192.168.1.203

Los cuales se interconectaron dependiendo de la topología correspondiente, siguiendo los esquemas presentados en las transparencias.

Presentación Topologías.

SantiCortes

Santiago Cortés Ocaña
Ingeniero de Control

 

DeviceLogix Cap.1 Introducción

logo2dominios


DeviceLogix es una tecnología de Rockwell Automation, que permite distribuir lógica en los dispositivos de campo, esto permite disponer de inteligencia local, y entre los dispositivos que soportan esta tecnología en el portfolio de AB están:

  • Variadores.
  • Arrancadores Suaves.
  • Auxiliares de mando.
  • Periferia E/S.
  • Relés integrales de protección de motores.
Página de productos DeviceLogix:
http://ab.rockwellautomation.com/es/Networks-and-Communications/DeviceLogix-Enabled-Products#products

DeviceLogixDe los productos antes comentados, he trabajado en profundidad con los relés y con periferia E/S, tanto con CompactBlock I/O como con POINT I/O. De estas dos opciones de periferia E/S, los CompactBlock I/O están descatalogados, no obstante haremos un repaso a ambas gamas de periferia E/S.

devicelogix Módulo CompactBlock I/O

DeviceLogix con Periferia E/S POINT I/O.

Esta periferia E/S, soporta DeviceLogix con el módulo 1734-8CFGDLX, aunque es un módulo de ocho (8) puntos de E/S digitales autoconfigurables, permite la escritura y lectura de módulos de tipo analógico, además de operaciones internas con registros de tipo entero.

devicelogix1

Las cabeceras de comunicación, pueden ser en cualquiera de los protocolos CIP de la ODVA:

  • EtherNet/IP representa un estándar abierto industrial que permite la transmisión de mensajes implícita y explícita, y emplea medios físicos y equipos Ethernet de uso corriente a nivel comercial.
  • ControlNet permite que los dispositivos de control inteligentes de alta velocidad compartan la información necesaria para el control supervisor, coordinación de celdas de trabajo, interfaces de operador, configuración de dispositivos remotos, programación y resolución de problemas.
  • DeviceNet ofrece acceso de alta velocidad a los datos de la planta provenientes de los dispositivos de la planta y una reducción significativa en el cableado.

No obstante, el bus del chasis del POINT I/O es DeviceNet y por ello, se utiliza el software RSNetworx for DeviceNet para la configuración de los módulos y programación de DeviceLogix.

Página del producto:
http://ab.rockwellautomation.com/es/IO/1734-POINT-IO-Modules
Descripción del producto:
En próximas entradas, veremos en profundidad esta periferia E/S y las funcionalidades de DeviceLogix.
Siguiente entrada de la serie:
Saludos.
favicon

Periferia E/S Centralizada Vs. Periferia E/S Descentralizada Capítulo 3

NoejucomLOGO     logo_v1

Para finalizar con esta serie, vamos a realizar una pequeña comparativa de las dos soluciones de Periferia E/S en un ejemplo de Sistema de Control.

El sistema de ejemplo, consta de cuatro células de fabricación con la siguiente configuración y señales previstas:

  • Célula Principal 16ED/16SD. En esta ubicación implementaremos el PAC (Autómata).
  • Célula 1 16ED/8SD.
  • Célula 2 16ED/8SD.
  • Célula 3 16ED/8SD.

periferia13

La disposición física y distancias entre las células es la siguiente:

periferia17

1. Sistema de Control.

Para automatizar este proceso, hemos elegido un PAC con muy buen precio de la marca Allen Bradley, con la referencia CompactLogix L24ER QB1B que equipa 16 ED y 16 SD, ampliable en cuatro (4) módulos 1769 y que permite hasta ocho (8) conexiones Ethernet/IP.

Guía de selección.

periferia18

Antes de comenzar a realizar la valoración entre los dos tipos de Periferia E/S, indicar que pueden existir sistemas mixtos, donde se implementen un número de E/S con Periferia Centralizada y otras con Descentralizada, es díficil encontrar un sistema puramente Centralizado o Descentralizado.

2. Arquitectura del Sistema de Control.

2.1 Arquitectura con Periferia Centralizada.

Según las lista de señales del sistemas, necesitamos 64 ED y 40 SD, por lo que el PAC lo ampliamos mediante tres tarjetas, dos 1769-IQ32 (32ED) y una 1769-OB32 (32SD), podíamos haber usado una tarjeta de 32ED y una de 16ED, no obstante por homogeneizar y racionalizar la referencias de repuestos, nos decidimos por dos de 32ED. No obstante, lo hagamos de una manera u otra, sólo tenemos la posibilidad de ampliar el sistema, más allá de la reservas, mediante una tarjeta, ya que como vimos en la guía de selección, este equipo sólo permite cuatro módulos de ampliación.

Siendo la Arquitectura de Control resultante:

periferia15

2.2 Arquitectura con Periferia Descentralizada.

En el caso de Periferia Descentralizada, nos decantamos por el sistema POINT I/O con la posibilidad de realizar una red DLR, dando robustez a la conexión entre el PAC y los módulos periféricos de E/S, además de darnos algunas otras prestaciones adicionales.

Siendo la Arquitectura de Control resultante:

periferia16

3. Valoración económica de las dos Arquitecturas de Control.

Para comenzar me gustaría aclarar que la fuente de los precios, ha sido www.plccenter.com y no he entrado en valoraciones de ellos.

Siendo la valoración económica la siguiente:

periferia14

En una primera valoración, podemos observar que existe una diferencia de 578,07 € a favor de la periferia centralizada, pero sólo hemos valorado equipos de control y ahora debemos valorar otras prestaciones y costes de instalación.

4. Valoración económica de Sistemas de Cableado.

Aunque los sistemas de cableados, incluyen costes por precableados, conexionado, cajas, armarios, bandejas y estos costes siempre van en detrimento de la Periferia Centralizada, en nuestra comparación sólo vamos a valorar el coste de mangueras y cables, que como veréis es suficiente para decantar la balanza a favor de la Periferia Descentralizada.

Indicar que el sistema vamos a implementarlo en una planta que dispone de canalizaciones libres y las distancias las hemos indicado anteriormente (recordamos en la siguiente imagen) y que la comparación la vamos a realizar con las Células 1,2 y 3, ya que las señales de la Célula Principal es común en ambas soluciones.

periferia17

4.1 Cableado Periferia Centralizada.

Interconexión Célula 1.

Disponemos de 16 ED y 8 SD, por ello deberíamos tirar:

  • 1 manguera de 20 m de Distribución de 24VCC.
  • 1 manguera de 20 m multihilo con pantalla general para las ED.
  • 1 manguera de 20 m multihilo con pantalla general para las SD.
Interconexión Célula 2.

Disponemos de 16 ED y 8 SD, por ello deberíamos tirar:

  • 1 manguera de 30 m de Distribución de 24VCC.
  • 1 manguera de 30 m multihilo con pantalla general para las ED.
  • 1 manguera de 30 m multihilo con pantalla general para las SD.
Interconexión Célula 3.

Disponemos de 16 ED y 8 SD, por ello deberíamos tirar:

  • 1 manguera de 40 m de Distribución de 24VCC.
  • 1 manguera de 40 m multihilo con pantalla general para las ED.
  • 1 manguera de 40 m multihilo con pantalla general para las SD.

 Siendo el total necesario:

  • 90 m de manguera de Distribución de 24VCC.
  • 90 m de manguera multihilo con pantalla general para las ED.
  • 90 m de manguera multihilo con pantalla general para las SD.

Siendo el coste de cableado para la Periferia E/S Centralizada de 2100 €.

4.2 Cableado Periferia Descentralizada.

Interconexión Célula 1.

Sólo debemos tirar un cable FTP entre la Célula Principal y la Célula 2, ya que los 24VCC podemos utilizar los existentes en el armario de la Célula, por lo que necesitamos:

  • Cable FTP de Cat 6 de 20 m.
  • Dos conectores RJ-45 de Cat 6.
Interconexión Célula 2.

Sólo debemos tirar un cable FTP a la Célula 1 y otro a la Célula 3, ya que los 24VCC podemos utilizar los existentes en el armario de la Célula, por lo que necesitamos:

  • Cable FTP de Cat 6 de 30 m con Célula 1 y 30 m con Célula 3.
  • Dos conectores RJ-45  de Cat 6.
Interconexión Célula 3.

Sólo debemos tirar un cable FTP entre la Célula 3 y la Célula Principal, ya que los 24VCC podemos utilizar los existentes en el armario de la Célula, por lo que necesitamos:

  • cable FTP de Cat 6 de 40 m.
  • Dos conectores RJ-45  de Cat 6.

Siendo el total necesario:

  • 120 m de cable FTP Cat6.
  • 8 conectores RJ-45 Cat6

Siendo el coste de cableado para la Periferia E/S Descentralizada de 600 €.

En esta segunda valoración, podemos observar que existe una diferencia de 1500 € a favor de la periferia Descentralizada, que si le quitamos los 578,07 € que tenía a favor los requipos de control en la Periferia E/S Centralizada, nos quedan 921,93 € a favor de la Periferia E/S Descentralizada.

4. Prestaciones.

Además de los costes de aquisición de equipos y cableado, debemos valorar las prestaciones de uno y otro sistema:

Ventajas Periferia Centralizada:

  • Racionalización de referencias de equipos de control (3 frente a 5).
  • Centralización de E/S para diagnóstico de señales.
  • Arquitectura de comunicaciones y configuración más sencilla.

Ventajas Periferia Descentralizada:

  • Conectividad a pie de equipo, abriendo el anillo DLR.
  • Fácilmente Ampliable.
  • Reducción de espacio.
  • Reducción de cableado.
  • Reducción de consumos.
  • Focalización de repuestos, si se estropea una ED o SD en una Célula, sólo debemos cambiar un módulo de 8 ED ó 8 SD.

5. Conclusiones.

El coste de los equipos de Control en la Periferia E/S Descentralizada es superior, no obstante se ve compensado con los ahorros en cableado e interconexión, además de aportar prestaciones adicionales que no tiene la Periferia E/S Centralizada.

Saludos!!!!!

Periferia E/S Centralizada Vs. Periferia E/S Descentralizada Capítulo 2

NoejucomLOGO     logo_v1

 El cableado clásico de los PLC’s, se ha realizado principalmente  de tres formas:

  • Conectando directamente las mangueras de campo a las bornas de las tarjetas del PLC.
  • Interconectando las bornas mediante un regletero de bornas de paso o seccionables.
  • A través de sistemas de precableados, con separación galvánica o no.

periferia7Sistema precableado Telefast de Schneider (Telemecánica)

En función del sistema que usemos, el espacio requerido para la recogida y tratamiento de las mangueras de campo e interconexión entre armarios, ocupa un espacio considerable. Desde mi punto de vista técnico y sin olvidar el equilibrio entre prestaciones y costes, la separación galvánica con relés para las señales digitales y con separadores galvánicos para las señales analógicas, es el método más indicado.
1. Periferia E/S Centralizada.

La periferia centralizada, consiste en cablear todas la señales de E/S agrupadas en un armario, éste puede disponer de varios cuerpos en función del número de E/S necesarias.

Por lo comentado anteriormente, el PLC o PAC puede disponer de dos configuraciones posibles:

  • PLC/PAC con un sólo bastidor.
  • PLC/PAC con varios bastidores, conectados por buses de expansión, buses de campo o redes de control.

periferia8Armarios con Periferia E/S Centralizada con bastidor y multibastidor.

Las ventajas e incovenientes que presenta la Periferia E/S Centralizada son:

Ventajas Periferia E/S Centralizada:

  • Simplifica la arquitectura de comunicaciones.
  • Simplifica la arquitectura de control y su configuración.
  • Centraliza la verificación de equipos en caso de fallos.
  • Da más seguridad al personal con falta de formación o experiencia en automatización y sistemas.

Inconvenientes Periferia E/S Centralizada:

  • Aumenta las dimensiones de los armarios de control (aumento de canaletas, regleteros y aparellaje auxiliar) y el espacio físico para ubicar éstos.
  • Aumenta el número de cables y mangueras.
  • Aumenta las canalizaciones.
  • La identificación de E/S es más complicada, no ayudando al diagnóstico de averías.
  • Poca flexibilidad ante ampliaciones y modificaciones.
2. Periferia E/S Descentralizada o Distribuida.

La periferia descentralizada, también conocida como Distribuida o E/S Remotas, consiste en implementar la señales de E/S próximos a los sensores, instrumentos y actuadores de nuestro Sistema de Control, reduciendo el cableado y por ello la masificación de canalizaciones y armarios de control.

Por lo comentado anteriormente, el PLC o PAC puede disponer de dos configuraciones posibles:

  • PLC/PAC con varios bastidores, conectados por buses de datos o redes de control.
  • PLC/PAC con Periferia E/S conectadas con éste mediante buses de datos o redes de control.

Arquitectura_DLR1Periferia E/S Descentralizada con Topología en Anillo

Las ventajas e incovenientes que presenta la Periferia E/S Descentralizada son:

Ventajas Periferia E/S Descentralizada:

  • Reduce dimensiones de armarios.
  • Reduce el número de cables y mangueras.
  • Reduce canalizaciones.
  • Simplifica la identificación de E/S y facilita el diagnóstico y reparación de averías.
  • Reduce los tiempos de parada e indisponibilidad.
  • Gran flexibilidad ante ampliaciones y modificaciones.
  • Reduce los costes de mantenimiento, al focalizar los repuestos, siendo las afecciones por averías más pequeñas.

periferia10E/S remotas de Weidmüller

Inconvenientes Periferia E/S Descentralizada:

  • Aumenta la arquitectura de comunicaciones y en función del bus o red de control que elijamos, también aumentaría el número de equipos específicos para las comunicaciones.
  • La arquitectura de control y su configuración requiere de conocimientos de buses y redes.
  • Da más inseguridad al personal con falta de formación o experiencia en automatización y sistemas.

periferia11Cabecera Perideria E/S Descentralizada Profibus DP

3. ¿Cuando implementar Periferia E/S Centralizada o Descentralizada?.

Cada proyecto de automatización requiere un análisis, aunque cuando son recurrentes, podemos tomar una decisión más rápida por la experiencia obtenida en proyectos anteriores.

Los parámetros, puramente económicos y de instalación, a valorar para decidir entre las dos soluciones son:

  • Número y tipos de E/S.
  • Disposición física de los equipos (sensores, instrumentos y actuadores).
  • Disponibilidad de espacio para implementar armarios distribuidos.
  • Estándares de buses de campo y redes de control (limitaciones en número de nodos y distancias).
  • Posibilidad de ampliación futura.

Ejemplos de aplicación de Periferia E/S Centralizada:

  • Un proceso o máquina que disponga de un número de E/S reducidas.
  • Una máquina o proceso que disponga de todos los sensores cerca del armario de control, por ejemplo una máquina herramienta.
  • En plantas que los armarios de control se centralicen, por ejemplo en aquellas que exista un ambiente corrosivo o ATEX.
  • Sistemas de control que no se vayan a ampliar.
  • Arquitecturas que se vayan a implementar sobre máquinas o procesos existentes y no dispongamos de espacio para la instalación de la Periferia E/S.

Ejemplos de aplicación de Periferia E/S Descentralizada:

  • Un proceso o máquina que disponga de un número de E/S elevadas.
  • Una máquina o proceso que tenga dispersos los sensores, instrumentos y actuadores (con cierta agrupación de los mismos).
  • Sistemas de control que estén previsto ampliar.
  • Instalaciones con grupos y objetos preconizados.
  • Instalaciones en las que no dispongamos espacio en las canalizaciones.

En la siguiente entrada “Periferia E/S Centralizada Vs. Periferia E/S Descentralizada Capítulo 3″ realizaremos un ejemplo de arquitectura con cada uno de los tipos de Periferia E/S.

Saludos!!!!